Multi-Agent, AI Agent, 系统设计
多智能体系统设计:协作式 AI 的未来
探索如何设计和实现多个 AI Agent 协同工作的系统,提升复杂任务的处理能力。
0次点击8分钟阅读
引言
单个 AI Agent 的能力是有限的,而多智能体系统(Multi-Agent Systems)通过让多个专业化的 Agent 协同工作,可以解决更复杂的问题。本文将深入探讨如何设计和实现高效的多智能体系统。
为什么需要多智能体系统
单 Agent 的局限性
- 认知负担:单个 Agent 难以处理多领域知识
- 并行瓶颈:串行执行效率低下
- 专业深度不足:通才 Agent 在特定领域不够深入
- 错误累积:长链任务中错误会累积
多 Agent 的优势
单 Agent 方式: 用户 → 通用 Agent → 结果 (需要处理所有子任务) 多 Agent 方式: 用户 → 协调 Agent ├→ 研究 Agent → 数据 ├→ 分析 Agent → 洞察 └→ 写作 Agent → 报告 (各司其职,并行执行)
Anthropic 的多智能体研究系统
Anthropic 构建了一个多智能体研究系统,其架构包括:
- 规划 Agent:根据用户查询制定研究计划
- 并行搜索 Agent:同时进行多个搜索任务
- 合成 Agent:整合所有搜索结果
1class MultiAgentResearchSystem: 2 def __init__(self): 3 self.planner = PlannerAgent() 4 self.searchers = [SearchAgent() for _ in range(5)] 5 self.synthesizer = SynthesizerAgent() 6 7 async def research(self, query): 8 # 1. 规划研究任务 9 plan = await self.planner.create_plan(query) 10 11 # 2. 并行搜索 12 search_tasks = [ 13 searcher.search(subtask) 14 for searcher, subtask in zip(self.searchers, plan.subtasks) 15 ] 16 results = await asyncio.gather(*search_tasks) 17 18 # 3. 合成结果 19 final_report = await self.synthesizer.synthesize(results) 20 21 return final_report
多 Agent 架构模式
1. 管道模式(Pipeline)
Agent 按顺序处理,每个 Agent 的输出是下一个的输入:
1class PipelineMultiAgent: 2 def __init__(self): 3 self.agents = [ 4 DataExtractionAgent(), 5 DataValidationAgent(), 6 DataTransformationAgent(), 7 DataStorageAgent() 8 ] 9 10 async def process(self, input_data): 11 result = input_data 12 13 for agent in self.agents: 14 # 记录每个阶段 15 stage_name = agent.__class__.__name__ 16 print(f"阶段: {stage_name}") 17 18 # 执行当前 Agent 19 result = await agent.process(result) 20 21 # 验证输出 22 if not agent.validate_output(result): 23 raise PipelineError(f"{stage_name} 输出无效") 24 25 return result
适用场景:
- 数据处理管道
- 文档生成流程
- 多步骤转换任务
2. 并行模式(Parallel)
多个 Agent 同时执行,结果合并:
1class ParallelMultiAgent: 2 def __init__(self): 3 self.agents = { 4 'sentiment': SentimentAgent(), 5 'entities': EntityExtractionAgent(), 6 'topics': TopicModelingAgent(), 7 'summary': SummaryAgent() 8 } 9 10 async def analyze(self, text): 11 # 并行执行所有分析 12 tasks = { 13 name: agent.analyze(text) 14 for name, agent in self.agents.items() 15 } 16 17 # 等待所有结果 18 results = {} 19 for name, task in tasks.items(): 20 try: 21 results[name] = await task 22 except Exception as e: 23 print(f"Agent {name} 失败: {e}") 24 results[name] = None 25 26 return results
适用场景:
- 多角度分析
- 独立任务批处理
- 资源密集型操作
3. 层级模式(Hierarchical)
管理 Agent 协调多个工作 Agent:
1class HierarchicalMultiAgent: 2 def __init__(self): 3 self.manager = ManagerAgent() 4 self.workers = { 5 'research': ResearchAgent(), 6 'code': CodingAgent(), 7 'test': TestingAgent(), 8 'document': DocumentationAgent() 9 } 10 11 async def execute_project(self, requirements): 12 # 管理者制定计划 13 plan = await self.manager.create_plan(requirements) 14 15 for task in plan.tasks: 16 # 管理者分配任务 17 assigned_agent = self.manager.assign_task(task, self.workers) 18 19 # 工作者执行任务 20 result = await assigned_agent.execute(task) 21 22 # 管理者验证结果 23 if await self.manager.validate(result, task): 24 await self.manager.mark_complete(task) 25 else: 26 # 重新分配或调整策略 27 await self.manager.handle_failure(task, result) 28 29 return await self.manager.finalize_project()
适用场景:
- 复杂项目管理
- 动态任务分配
- 需要决策协调的场景
4. 市场模式(Market-Based)
Agent 通过竞标获取任务:
1class MarketBasedMultiAgent: 2 def __init__(self): 3 self.agents = [ 4 SpecializedAgent(specialty="web_dev"), 5 SpecializedAgent(specialty="data_science"), 6 SpecializedAgent(specialty="devops"), 7 ] 8 9 async def execute_task(self, task): 10 # 1. 发布任务 11 bids = [] 12 for agent in self.agents: 13 # 每个 Agent 评估任务并出价 14 bid = await agent.bid_for_task(task) 15 if bid: 16 bids.append((agent, bid)) 17 18 # 2. 选择最佳 Agent 19 if not bids: 20 raise NoAgentAvailableError("没有 Agent 能处理此任务") 21 22 # 根据能力评分和成本选择 23 best_agent, best_bid = max(bids, key=lambda x: x[1].score) 24 25 # 3. 执行任务 26 result = await best_agent.execute(task) 27 28 return result
适用场景:
- 资源受限环境
- 需要负载均衡
- Agent 能力差异大
5. 团队协作模式(Collaborative)
Agent 共享信息,协同完成任务:
1class CollaborativeMultiAgent: 2 def __init__(self): 3 self.shared_memory = SharedMemory() 4 self.agents = [ 5 CollaborativeAgent("researcher", self.shared_memory), 6 CollaborativeAgent("analyst", self.shared_memory), 7 CollaborativeAgent("writer", self.shared_memory) 8 ] 9 10 async def collaborate(self, task): 11 # 初始化共享状态 12 await self.shared_memory.set("task", task) 13 await self.shared_memory.set("progress", {}) 14 15 # Agent 持续协作直到完成 16 while not await self.is_task_complete(): 17 for agent in self.agents: 18 # Agent 读取共享信息 19 context = await self.shared_memory.get_context() 20 21 # Agent 决定是否采取行动 22 if await agent.should_act(context): 23 # 执行行动 24 action_result = await agent.act(context) 25 26 # 更新共享内存 27 await self.shared_memory.update( 28 agent.name, 29 action_result 30 ) 31 32 return await self.shared_memory.get("final_result") 33 34class CollaborativeAgent: 35 def __init__(self, name, shared_memory): 36 self.name = name 37 self.memory = shared_memory 38 39 async def should_act(self, context): 40 # 根据上下文判断是否需要行动 41 prompt = f""" 42 你是 {self.name} Agent。 43 44 当前任务进度:{context} 45 46 基于其他 Agent 的工作,你现在需要采取行动吗? 47 如果需要,你应该做什么? 48 49 回答格式: 50 {{"should_act": true/false, "reason": "原因"}} 51 """ 52 53 response = await self.call_claude(prompt) 54 return response["should_act"]
适用场景:
- 需要紧密协作
- 信息高度关联
- 迭代优化任务
Agent 间通信机制
1. 消息队列
1import asyncio 2from collections import deque 3 4class MessageQueue: 5 def __init__(self): 6 self.queues = {} 7 8 def create_queue(self, agent_id): 9 self.queues[agent_id] = deque() 10 11 async def send(self, from_agent, to_agent, message): 12 if to_agent not in self.queues: 13 self.create_queue(to_agent) 14 15 self.queues[to_agent].append({ 16 'from': from_agent, 17 'content': message, 18 'timestamp': time.time() 19 }) 20 21 async def receive(self, agent_id, timeout=None): 22 queue = self.queues.get(agent_id, deque()) 23 24 if timeout: 25 start = time.time() 26 while not queue and (time.time() - start) < timeout: 27 await asyncio.sleep(0.1) 28 29 if queue: 30 return queue.popleft() 31 return None 32 33# 使用 34message_queue = MessageQueue() 35 36# Agent A 发送消息给 Agent B 37await message_queue.send( 38 from_agent="agent_a", 39 to_agent="agent_b", 40 message={"task": "分析数据", "data": data} 41) 42 43# Agent B 接收消息 44message = await message_queue.receive("agent_b", timeout=5)
2. 共享状态存储
1class SharedState: 2 def __init__(self): 3 self.state = {} 4 self.locks = {} 5 self.history = [] 6 7 async def set(self, key, value, agent_id): 8 # 记录变更历史 9 self.history.append({ 10 'key': key, 11 'value': value, 12 'agent': agent_id, 13 'timestamp': time.time() 14 }) 15 16 self.state[key] = value 17 18 async def get(self, key): 19 return self.state.get(key) 20 21 async def lock(self, key, agent_id): 22 """锁定资源,防止竞争""" 23 if key in self.locks: 24 raise ResourceLockedError(f"{key} 已被 {self.locks[key]} 锁定") 25 26 self.locks[key] = agent_id 27 28 async def unlock(self, key, agent_id): 29 if self.locks.get(key) == agent_id: 30 del self.locks[key] 31 32 async def get_history(self, key=None): 33 """获取变更历史""" 34 if key: 35 return [h for h in self.history if h['key'] == key] 36 return self.history
3. 事件驱动
1class EventBus: 2 def __init__(self): 3 self.subscribers = {} 4 5 def subscribe(self, event_type, agent, callback): 6 if event_type not in self.subscribers: 7 self.subscribers[event_type] = [] 8 9 self.subscribers[event_type].append({ 10 'agent': agent, 11 'callback': callback 12 }) 13 14 async def publish(self, event_type, data): 15 if event_type not in self.subscribers: 16 return 17 18 # 通知所有订阅者 19 tasks = [ 20 subscriber['callback'](data) 21 for subscriber in self.subscribers[event_type] 22 ] 23 24 await asyncio.gather(*tasks) 25 26# 使用 27event_bus = EventBus() 28 29# Agent 订阅事件 30def on_data_ready(data): 31 print(f"Agent received data: {data}") 32 33event_bus.subscribe("data_ready", "analyst_agent", on_data_ready) 34 35# 发布事件 36await event_bus.publish("data_ready", {"records": 1000})
协调策略
1. 中心化协调
一个 Agent 负责协调所有其他 Agent:
1class CentralCoordinator: 2 def __init__(self, agents): 3 self.agents = agents 4 self.task_queue = asyncio.Queue() 5 self.results = {} 6 7 async def coordinate(self, project): 8 # 分解任务 9 tasks = await self.decompose_project(project) 10 11 # 添加到队列 12 for task in tasks: 13 await self.task_queue.put(task) 14 15 # 分配给 Agent 16 workers = [ 17 self.worker_loop(agent) 18 for agent in self.agents 19 ] 20 21 # 等待完成 22 await asyncio.gather(*workers) 23 24 return self.compile_results() 25 26 async def worker_loop(self, agent): 27 while True: 28 try: 29 task = await asyncio.wait_for( 30 self.task_queue.get(), 31 timeout=1.0 32 ) 33 except asyncio.TimeoutError: 34 break 35 36 result = await agent.execute(task) 37 self.results[task.id] = result 38 self.task_queue.task_done()
2. 分布式协调
Agent 自主决策和协调:
1class DistributedAgent: 2 def __init__(self, agent_id, peers): 3 self.id = agent_id 4 self.peers = peers 5 self.local_state = {} 6 7 async def coordinate(self, task): 8 # 1. 评估自己能否处理 9 can_handle = await self.can_handle(task) 10 11 if can_handle: 12 return await self.execute(task) 13 14 # 2. 寻求 peer 帮助 15 for peer in self.peers: 16 if await peer.can_handle(task): 17 # 委托给 peer 18 result = await peer.execute(task) 19 # 更新本地状态 20 await self.learn_from(peer, task, result) 21 return result 22 23 # 3. 协作完成 24 return await self.collaborative_execute(task) 25 26 async def collaborative_execute(self, task): 27 # 分解任务 28 subtasks = await self.decompose(task) 29 30 # 分配给合适的 peer 31 assignments = {} 32 for subtask in subtasks: 33 best_peer = await self.find_best_peer(subtask) 34 assignments[subtask] = best_peer 35 36 # 并行执行 37 results = await asyncio.gather(*[ 38 peer.execute(subtask) 39 for subtask, peer in assignments.items() 40 ]) 41 42 # 整合结果 43 return await self.integrate_results(results)
错误处理和容错
1. Agent 故障恢复
1class FaultTolerantMultiAgent: 2 def __init__(self): 3 self.agents = [] 4 self.backup_agents = [] 5 self.checkpoints = {} 6 7 async def execute_with_recovery(self, task): 8 for attempt in range(3): 9 try: 10 # 保存检查点 11 checkpoint = await self.save_checkpoint() 12 13 # 执行任务 14 result = await self.execute(task) 15 16 # 验证结果 17 if await self.validate_result(result): 18 return result 19 else: 20 raise ValidationError("结果验证失败") 21 22 except Exception as e: 23 print(f"尝试 {attempt + 1} 失败: {e}") 24 25 # 恢复到检查点 26 await self.restore_checkpoint(checkpoint) 27 28 # 切换到备用 Agent 29 if attempt < 2: 30 await self.switch_to_backup() 31 32 raise MaxRetriesError("任务执行失败") 33 34 async def switch_to_backup(self): 35 """切换到备用 Agent""" 36 if self.backup_agents: 37 backup = self.backup_agents.pop(0) 38 self.agents.insert(0, backup)
2. 部分失败处理
1async def partial_failure_handling(agents, task): 2 """处理部分 Agent 失败的情况""" 3 4 results = [] 5 failures = [] 6 7 for agent in agents: 8 try: 9 result = await agent.execute(task) 10 results.append(result) 11 except Exception as e: 12 failures.append({ 13 'agent': agent, 14 'error': str(e) 15 }) 16 17 # 如果大多数成功,继续 18 if len(results) > len(agents) / 2: 19 # 使用多数投票或平均 20 final_result = aggregate_results(results) 21 return final_result 22 else: 23 # 失败太多,重试或报错 24 raise PartialFailureError(f"只有 {len(results)}/{len(agents)} 成功")
性能优化
1. Agent 池管理
1class AgentPool: 2 def __init__(self, agent_class, pool_size=5): 3 self.agent_class = agent_class 4 self.pool_size = pool_size 5 self.available = asyncio.Queue() 6 self.in_use = set() 7 8 # 初始化池 9 for _ in range(pool_size): 10 agent = agent_class() 11 self.available.put_nowait(agent) 12 13 async def acquire(self, timeout=None): 14 """获取可用 Agent""" 15 agent = await asyncio.wait_for( 16 self.available.get(), 17 timeout=timeout 18 ) 19 self.in_use.add(agent) 20 return agent 21 22 async def release(self, agent): 23 """释放 Agent 回池""" 24 if agent in self.in_use: 25 self.in_use.remove(agent) 26 await agent.reset() # 重置状态 27 await self.available.put(agent) 28 29 async def execute_with_pool(self, tasks): 30 """使用池执行多个任务""" 31 async def execute_task(task): 32 agent = await self.acquire() 33 try: 34 return await agent.execute(task) 35 finally: 36 await self.release(agent) 37 38 return await asyncio.gather(*[ 39 execute_task(task) for task in tasks 40 ])
2. 负载均衡
1class LoadBalancer: 2 def __init__(self, agents): 3 self.agents = agents 4 self.load_stats = {agent: 0 for agent in agents} 5 6 async def assign_task(self, task): 7 # 找到负载最低的 Agent 8 least_loaded = min( 9 self.agents, 10 key=lambda a: self.load_stats[a] 11 ) 12 13 # 增加负载计数 14 self.load_stats[least_loaded] += 1 15 16 try: 17 result = await least_loaded.execute(task) 18 return result 19 finally: 20 # 减少负载计数 21 self.load_stats[least_loaded] -= 1
3. 结果缓存
1class CachedMultiAgent: 2 def __init__(self): 3 self.cache = {} 4 self.cache_hits = 0 5 self.cache_misses = 0 6 7 async def execute_with_cache(self, task): 8 # 生成缓存键 9 cache_key = self.generate_cache_key(task) 10 11 # 检查缓存 12 if cache_key in self.cache: 13 self.cache_hits += 1 14 return self.cache[cache_key] 15 16 # 缓存未命中,执行任务 17 self.cache_misses += 1 18 result = await self.execute(task) 19 20 # 存入缓存 21 self.cache[cache_key] = result 22 23 return result 24 25 def get_cache_stats(self): 26 total = self.cache_hits + self.cache_misses 27 hit_rate = self.cache_hits / total if total > 0 else 0 28 return { 29 'hit_rate': hit_rate, 30 'hits': self.cache_hits, 31 'misses': self.cache_misses 32 }
评估多 Agent 系统
关键指标
1class MultiAgentMetrics: 2 def __init__(self): 3 self.metrics = { 4 'throughput': [], # 吞吐量 5 'latency': [], # 延迟 6 'success_rate': [], # 成功率 7 'agent_utilization': {}, # Agent 利用率 8 'communication_overhead': [], # 通信开销 9 'coordination_time': [] # 协调时间 10 } 11 12 async def measure_execution(self, multi_agent_system, task): 13 start_time = time.time() 14 15 # 执行任务 16 try: 17 result = await multi_agent_system.execute(task) 18 success = True 19 except Exception as e: 20 result = None 21 success = False 22 23 # 记录指标 24 latency = time.time() - start_time 25 self.metrics['latency'].append(latency) 26 self.metrics['success_rate'].append(1 if success else 0) 27 28 # 收集 Agent 利用率 29 for agent in multi_agent_system.agents: 30 agent_id = agent.id 31 if agent_id not in self.metrics['agent_utilization']: 32 self.metrics['agent_utilization'][agent_id] = [] 33 34 utilization = agent.get_utilization() 35 self.metrics['agent_utilization'][agent_id].append(utilization) 36 37 return result 38 39 def get_summary(self): 40 return { 41 'avg_latency': np.mean(self.metrics['latency']), 42 'success_rate': np.mean(self.metrics['success_rate']), 43 'avg_agent_utilization': { 44 agent_id: np.mean(utils) 45 for agent_id, utils in self.metrics['agent_utilization'].items() 46 } 47 }
实战案例:自动化软件开发系统
1class AutomatedDevSystem: 2 """多 Agent 协作的自动化开发系统""" 3 4 def __init__(self): 5 # 初始化各个专业 Agent 6 self.product_manager = ProductManagerAgent() 7 self.architect = ArchitectAgent() 8 self.developers = [DeveloperAgent(f"dev_{i}") for i in range(3)] 9 self.tester = TestingAgent() 10 self.reviewer = CodeReviewAgent() 11 12 # 共享工作空间 13 self.workspace = SharedWorkspace() 14 15 async def develop_feature(self, feature_request): 16 # 1. 产品经理分析需求 17 requirements = await self.product_manager.analyze( 18 feature_request, 19 self.workspace 20 ) 21 22 # 2. 架构师设计方案 23 design = await self.architect.design( 24 requirements, 25 self.workspace 26 ) 27 28 # 3. 开发者并行实现 29 implementation_tasks = design.split_into_tasks() 30 implementations = await asyncio.gather(*[ 31 developer.implement(task, self.workspace) 32 for developer, task in zip(self.developers, implementation_tasks) 33 ]) 34 35 # 4. 代码审查 36 review_results = await asyncio.gather(*[ 37 self.reviewer.review(impl, self.workspace) 38 for impl in implementations 39 ]) 40 41 # 5. 修改代码(如果需要) 42 for impl, review in zip(implementations, review_results): 43 if review.needs_changes: 44 await impl.developer.fix_issues(review.issues, self.workspace) 45 46 # 6. 测试 47 test_results = await self.tester.test_feature( 48 implementations, 49 self.workspace 50 ) 51 52 # 7. 最终验证 53 if test_results.all_passed: 54 return await self.finalize_feature(implementations) 55 else: 56 # 返回开发者修复 57 return await self.fix_and_retry(test_results.failures) 58 59class ProductManagerAgent: 60 async def analyze(self, feature_request, workspace): 61 """分析需求,生成用户故事和验收标准""" 62 prompt = f""" 63 作为产品经理,请分析以下功能请求: 64 65 {feature_request} 66 67 请提供: 68 1. 用户故事 69 2. 验收标准 70 3. 技术约束 71 4. 优先级评估 72 """ 73 74 response = await self.call_claude(prompt) 75 requirements = self.parse_requirements(response) 76 77 # 保存到共享工作空间 78 await workspace.set("requirements", requirements) 79 80 return requirements
最佳实践总结
- 明确职责分工:每个 Agent 有清晰的专长
- 选择合适架构:根据任务特点选择协作模式
- 设计通信机制:确保 Agent 间高效通信
- 实现容错机制:处理 Agent 故障和部分失败
- 性能优化:Agent 池、负载均衡、缓存
- 监控和评估:追踪关键指标,持续优化
- 测试协作:验证 Agent 间协作的正确性
挑战与解决方案
挑战 1:复合错误
多个 Agent 协作时,错误会累积和传播。
解决方案:
- 在关键节点设置检查点
- 实现错误隔离机制
- 提供降级方案
挑战 2:通信开销
Agent 间频繁通信可能影响性能。
解决方案:
- 批量处理消息
- 使用异步通信
- 缓存共享状态
挑战 3:协调复杂度
多 Agent 协调逻辑复杂。
解决方案:
- 使用成熟的协调模式
- 实现清晰的协议
- 提供可视化工具
未来展望
多智能体系统的发展方向:
- 自适应协作:Agent 动态调整协作策略
- 学习型系统:从历史协作中学习改进
- 大规模部署:支持数百个 Agent 协同
- 跨组织协作:不同系统的 Agent 互操作
总结
多智能体系统通过专业化分工和协同合作,能够处理单个 Agent 无法完成的复杂任务。关键是选择合适的架构模式、设计高效的通信机制、实现可靠的容错策略,并持续监控和优化系统性能。
